
Extra worked circuit problems

Laurent Lessard

This document presents worked solutions to two circuit problems using the systematic method of
writing component equations and eliminating currents via KCL.

• The first problem is a simple parallel RLC circuit.

• The second problem is a much more challenging circuit. This problem is more complicated
than anything we would ever ask you to do by hand; the point is to demonstrate that the
method still works even when the circuit is complicated.

Complete solutions are included after each problem.

1 RLC in parallel

Consider the following circuit:
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Figure 1: Parallel RLC circuit.

Find a differential equation that relates vin to i.

Detailed solution on the following page.
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Solution to parallel RLC problem

Let’s start by labeling the unknown currents and adding a ground reference at the negative terminal
of the voltage source.
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Figure 2: Parallel RLC circuit with currents labeled.

There are no nodes to label, since the entire top part of the circuit is at vin and the entire bottom
part is at ground. Let’s write equations for each of the components, and then apply KCL at the
top junction. We obtain:

vin = RiR (1a)

vin = 1
C ∫ iC dt (1b)

vin = L
diL
dt

(1c)

i = iR + iL + iC (1d)

We have 4 equations in 5 unknowns: {vin, i, iR, iL, iC}, which is exactly what we want, because we
would like to eliminate the three variables {iR, iL, iC} so that we are left with a single equation in
the two variables {vin, i}. We can isolate each of {iR, iL, iC} from (1a)–(1c) to obtain:

iR = 1
Rvin (2a)

iC = Cv̇in (2b)

iL = 1
L ∫ vin dt (2c)

i = iR + iL + iC (2d)

Substitute (2a)–(2c) into (2d) and obtain:

i = 1
Rvin + Cv̇in + 1

L ∫ vin dt (3)

We can differentiate both sides to get rid of the integral and we obtain our final answer:

di
dt = Cv̈in + 1

R v̇in + 1
Lvin (4)
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2 A more complicated problem

Consider the following circuit diagram:
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Figure 3: Circuit diagram

(a) What is the voltage drop across the capacitor as a function of vin?

(b) What happens to the voltage drop across the capacitor when R1 = R2 = R3 = R4? Why?

Detailed solution in the following pages!
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Solution to part (a)

First, redraw the diagram, labeling the unlabeled nodes and adding currents across each element.
Let’s also add a ground at the negative terminal of the voltage source. The current directions are
arbitrary, but remember the convention that voltage drops in the direction of current flow.
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Figure 4: Circuit diagram with nodes and currents labeled

Next, let’s write equations for each of the components, and then apply KCL at each junction. Since
we are interested in the voltage across the capacitor, let’s call that vo (output voltage) and include
it as one of our equations.

voltage source : vP = vin (1a)

component R1 : vP − vS = R1i1 (1b)

component R2 : vP − vQ = R2i2 (1c)

component C : vQ − vS = 1
C ∫ iC dt (1d)

component R3 : vQ − vT = R3i3 (1e)

component R4 : vS − vT = R4i4 (1f)

component L : vT = L
diL
dt

(1g)

output definition : vQ − vS = vo (1h)

node P : iL = i1 + i2 (2a)

node Q : i2 = i3 + iC (2b)

node S : i4 = i1 + iC (2c)

node T : iL = i3 + i4 (2d)

We have a total of 12 equations, and 12 variables: {vP , vQ, vS , vT , i1, i2, i3, i4, iC , iL, vin, vo}. So we
actually have too many equations! Since our hope is to eliminate 10 variables and be left with just
a single equation in {vin, vo}, we should have 11 equations, not 12! The culprit here is that one
of our KCL equations is redundant. (read: the four KCL equations are linearly dependent). To
see why, notice that if we combine the first three KCL equations: (2a) + (2b) − (2c), we actually
obtain (2d). Another way to say this is that the 4 KCL equations are linearly dependent. Since
(2d) doesn’t tell us anything new, we can ignore it.
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We can now start eliminating variables and reducing the number of equations. The first thing to do
is to eliminate vP since vP = vin from Eq. (1a) and to eliminate either vQ or vS from Eq. (1h), since
we want to make sure our solution includes vo. Let’s eliminate vQ by substituting vQ = vS + vo
everywhere. After eliminating vP and vQ and also removing (2d) since it is redundant, our equations
become:

component R1 : vin − vS = R1i1 (3a)

component R2 : vin − vS − vo = R2i2 (3b)

component C : vo = 1
C ∫ iC dt (3c)

component R3 : vS + vo − vT = R3i3 (3d)

component R4 : vS − vT = R4i4 (3e)

component L : vT = L
diL
dt

(3f)

node P : iL = i1 + i2 (4a)

node Q : i2 = i3 + iC (4b)

node S : i4 = i1 + iC (4c)

We now have 9 equations in 10 variables: {vS , vT , i1, i2, i3, i4, iC , iL, vin, vo}. From here, there are
many ways to proceed; we could pick any order we like to eliminate variables... My favorite way
is to eliminate all the currents first. The easiest way to do this is to use the equations (3a)–(3f),
since there is one equation for each different current we want to eliminate. Let’s start by rewriting
the component equations (3a)–(3f) to isolate each current.

component R1 : i1 = 1
R1

(vin − vS) (5a)

component R2 : i2 = 1
R2

(vin − vS − vo) (5b)

component C : iC = Cv̇o (5c)

component R3 : i3 = 1
R3

(vS + vo − vT ) (5d)

component R4 : i4 = 1
R4

(vS − vT ) (5e)

component L : iL = 1
L ∫ vT dt (5f)

node P : iL = i1 + i2 (6a)

node Q : i2 = i3 + iC (6b)

node S : i4 = i1 + iC (6c)

Now eliminate the currents by substituting (5a)–(5f) into (6a)–(6c). We are left with:

node P : 1
L ∫ vT dt = 1

R1
(vin − vS) + 1

R2
(vin − vS − vo) (7a)

node Q : 1
R2

(vin − vS − vo) = 1
R3

(vS + vo − vT ) + Cv̇o (7b)

node S : 1
R4

(vS − vT ) = 1
R1

(vin − vS) + Cv̇o (7c)

We’re down to 3 equations in 4 variables: {vS , vT , vin, vo}. Our goal is to eliminate vT and vS , so
let’s look for ways to isolate them. Let’s rearrange all equations to put vS and vT on the left-hand
side and see what we get. We’ll also differentiate (7a) to get rid of the integral.

node P :
(

1
R1

+ 1
R2

)
v̇S + 1

LvT =
(

1
R1

+ 1
R2

)
v̇in − 1

R2
v̇o (8a)

node Q :
(

1
R2

+ 1
R3

)
vS − 1

R3
vT = 1

R2
vin −

(
1
R2

+ 1
R3

)
vo − Cv̇o (8b)

node S :
(

1
R1

+ 1
R4

)
vS − 1

R4
vT = 1

R1
vin + Cv̇o (8c)
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Equations (8b) and (8c) only involve vS and vT (no derivatives), so we can solve these two equations
for vS and vT . The result is:

vS = vin −
R1 (R2 + R3)

R1R3 −R2R4
vo −

R1R2 (R3 + R4)

R1R3 −R2R4
Cv̇o (9a)

vT = vin −
(R2 + R3) (R1 + R4)

R1R3 −R2R4
vo −

(R1R2R3 + R1R4R3 + R2R4R3 + R1R2R4)

R1R3 −R2R4
Cv̇o (9b)

Note that (9a) and (9b) came from solving (8b) and (8c). So we should substitute our results into
(8a); the only equation we haven’t used yet. Substituting vS and vT from (9a) and (9b) into (8a),
we obtain one equation in the variables {vin, vo} (this is one long equation broken across three lines)(

1

R1
+

1

R2

)(
v̇in −

R1 (R2 + R3)

R1R3 −R2R4
v̇o −

R1R2 (R3 + R4)

R1R3 −R2R4
Cv̈o

)
+

1

L

(
vin −

(R2 + R3) (R1 + R4)

R1R3 −R2R4
vo −

(R1R2R3 + R1R4R3 + R2R4R3 + R1R2R4)

R1R3 −R2R4
Cv̇o

)
=

(
1

R1
+

1

R2

)
v̇in −

1

R2
v̇o (10)

This is it! We can simplify this a bit. Notice that the
(

1
R1

+ 1
R2

)
v̇in terms cancel from both sides,

leaving us with (again, one equation broken across two lines):

1

R2
v̇o −

(
1

R1
+

1

R2

)(
R1 (R2 + R3)

R1R3 −R2R4
v̇o +

R1R2 (R3 + R4)

R1R3 −R2R4
Cv̈o

)
+

1

L

(
vin −

(R2 + R3) (R1 + R4)

R1R3 −R2R4
vo −

(R1R2R3 + R1R4R3 + R2R4R3 + R1R2R4)

R1R3 −R2R4
Cv̇o

)
= 0 (11)

To make things a bit neater, we can collect the vo terms on the left and the vin term on the right
and we obtain:

pv̈o + qv̇o + rvo = kvin

where the constants are:

p = LC(R1 + R2)(R3 + R4)

q = L(R1 + R2 + R3 + R4) + CR1R2R3R4

(
1

R1
+

1

R2
+

1

R3
+

1

R4

)
r = (R1 + R4)(R2 + R3)

k = (R1R3 −R2R4)
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Solution to part (b)

Based on the solution of part (a), if we let R = R1 = R2 = R3 = R4, the ODE simplifies to:

LCv̈o +
(
L
R + RC

)
v̇o + vo = 0

Most importantly, the right-hand side is zero, and does not depend on vin! So when the dust settles,
vo → 0. There is eventually no voltage drop across the capacitor. But why?

One way to see this is to redraw the diagram in a more symmetric fashion. Here is the original
diagram, and then the redrawn version:
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Figure 5: Circuit diagram drawn two different (but equivalent) ways.

When drawn in this different way, we can see that the top part of the circuit is perfectly symmetric.
The paths P → Q→ T and P → S → T are identical, so we would expect vS = vQ and iC = 0 by
symmetry. It follows that vo = vS − vQ = 0.
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